< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Representanions of Hardy algebras associated with $$W^{*}$-correspondences$

Baruch Solel (jointly with Paul Muhly)

Technion - Israel Institute of Technology

Quantum Probability and Related Topics Bangalore, India 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 The Tensor and Hardy Algebras

2 Representations of the Tensor algebras

- 3 Representations of the Hardy algebras
- 4 Noncommutative Nevanlinna-Pick theorem

We begin with the following setup:

- \diamond *M* a *W*^{*}-algebra.
- *E* a *W**-correspondence over *M*. This means that *E* is a bimodule over *M* which is endowed with an *M*-valued inner product (making it a right-Hilbert *C**-module that is self dual). The left action of *M* on *E* is given by a unital, normal, *-homomorphism φ of *M* into the (*W**-) algebra of all bounded adjointable operators *L*(*E*) on *E*.

Examples

- (Basic Example) $M = \mathbb{C}, E = \mathbb{C}^d, d \ge 1.$
- $G = (G^0, G^1, r, s)$ a finite directed graph. $M = \ell^{\infty}(G^0)$, $E = \ell^{\infty}(G^1)$, $a\xi b(e) = a(r(e))\xi(e)b(s(e))$, $a, b \in M, \xi \in E$ $\langle \xi, \eta \rangle(v) = \sum_{s(e)=v} \langle \xi(e), \eta(e) \rangle$, $\xi, \eta \in E$.
- *M* arbitrary , $\alpha : M \to M$ a normal endomorphism. E = M with right action by multiplication, left action by $\varphi = \alpha$ and inner product $\langle \xi, \eta \rangle := \xi^* \eta$. Denote it $_{\alpha}M$.
- Φ is a normal, contractive, CP map on M. E = M ⊗_Φ M is the completion of M ⊗ M with ⟨a ⊗ b, c ⊗ d⟩ = b*Φ(a*c)d and c(a ⊗ b)d = ca ⊗ bd.

Note: If σ is a representation of M on H, $E \otimes_{\sigma} H$ is a Hilbert space with $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle_E) h_2 \rangle_H$.

Similarly, given two correspondences E and F over M, we can form the (internal) tensor product $E \otimes F$:

$$\langle e_1 \otimes f_1, e_2 \otimes f_2 \rangle = \langle f_1, \varphi(\langle e_1, e_2 \rangle_E) f_2 \rangle_F$$

 $\varphi_{E \otimes F}(a)(e \otimes f)b = \varphi_E(a)e \otimes fb.$

In particular we get "tensor powers" $E^{\otimes k}$. Also, given a sequence $\{E_k\}$ of correspondences over M, the direct sum $E_1 \oplus E_2 \oplus E_3 \oplus \cdots$ is also a correspondence (after an appropriate completion).

NΡ

For a correspondence E over M we define the Fock correspondence

$$\mathcal{F}(E) := M \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \cdots$$

For every $a \in M$ define the operator $\varphi_{\infty}(a)$ on $\mathcal{F}(E)$ by

$$\varphi_{\infty}(a)(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = (\varphi(a)\xi_1) \otimes \xi_2 \otimes \cdots \otimes \xi_n$$

and $\varphi_{\infty}(a)b = ab$. For $\xi \in E$, define the "shift" (or "creation") operator T_{ξ} by

$$T_{\xi}(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n.$$

and $T_{\xi}b = \xi b$. So that T_{ξ} maps $E^{\otimes k}$ into $E^{\otimes (k+1)}$.

Definition

- (1) The norm-closed algebra generated by $\varphi_{\infty}(M)$ and $\{T_{\xi} : \xi \in E\}$ will be called the **tensor algebra** of E and denoted $\mathcal{T}_{+}(E)$.
- (2) The ultra-weak closure of $\mathcal{T}_+(E)$ will be called the **Hardy** algebra of *E* and denoted $H^{\infty}(E)$.

Examples

1. If
$$M = E = \mathbb{C}$$
, $\mathcal{F}(E) = \ell^2$, $\mathcal{T}_+(E) = A(\mathbb{D})$ and $H^{\infty}(E) = H^{\infty}(\mathbb{D})$.

2. If $M = \mathbb{C}$ and $E = \mathbb{C}^d$ then $\mathcal{F}(E) = \ell^2(\mathbb{F}_d^+)$, $\mathcal{T}_+(E)$ is Popescu's \mathcal{A}_d and $H^{\infty}(E)$ is F_d^{∞} (Popescu) or \mathcal{L}_d (Davidson-Pitts).

Representations

In the purely algebraic setting the representations of the Tensor algebra are given by bimodule maps. Here

Definition

Let *E* be a W^* -correspondence over a von Neumann algebra *M*. Then:

completely contractive covariant representation of E on a Hilbert space H is a pair (T, σ) , where

- σ is a normal *-representation of *M* in *B*(*H*).
- **2** T is a linear, completely contractive map from E to B(H) that is continuous in the σ -topology on E and the ultraweak topology on B(H).
- T is a bimodule map in the sense that $T(S\xi R) = \sigma(S)T(\xi)\sigma(R), \ \xi \in E$, and $S, R \in M$.

・ロト ・ 日 ・ モ ト ・ モ ト ・ 日 ・ つへで

NP

Theorem

Given a c.c. representation (T, σ) of E on H, there is a unique c.c. representation of $\mathcal{T}_+(E)$ on H, written $T \times \sigma$, such that

$$T imes \sigma(arphi_\infty(a))=\sigma(a), \quad a\in M$$

$$T imes \sigma(T_{\xi}) = T(\xi), \quad \xi \in E.$$

Conversely, every c.c. representation of $T_+(E)$ is of this form.

Note: Given a c.c. representation (T, σ) on H, one can define a contraction

$$\tilde{T}: E \otimes_{\sigma} H \to H$$

by $ilde{T}(\xi\otimes h)=T(\xi)h$ and $ilde{T}$ has the intertwining property

$$ilde{T}(arphi(\mathbf{a})\otimes I_H)=\sigma(\mathbf{a}) ilde{T},\quad \mathbf{a}\in M.$$

Conversely: Every such map defines a representation of *E*.

NΡ

The σ -dual E^{σ}

Recall:
$$\tilde{T} : E \otimes_{\sigma} H \to H$$
 and $\tilde{T}(\varphi(a) \otimes I_H) = \sigma(a)\tilde{T}$, $a \in M$.

Corollary

The c.c. representations of $\mathcal{T}_+(E)$ that restrict to σ on M are parameterized by maps $\eta : H \to E \otimes_{\sigma} H$ with $\|\eta\| \leq 1$ that satisfy

$$(\varphi(a)\otimes I_H)\eta=\eta\sigma(a), \quad a\in M.$$

Note: $\eta = \tilde{T}^*$. The reason to look at the adjoint of these maps is:

Lemma

The set of all the maps $\eta : H \to E \otimes_{\sigma} H$ with the above intertwining property is a W^{*}-correspondence over $\sigma(M)'$ with inner product $\langle \eta, \zeta \rangle = \eta^* \zeta$ and bimodule structure $b \cdot \eta c = (I \otimes b)\eta c$ ($b, c \in \sigma(M)'$). Write E^{σ} for it and call it the σ -dual of E.

Corollary

The closed unit ball, $\overline{\mathbb{D}(E^{\sigma})}$ parameterizes the c.c. representations of $\mathcal{T}_{+}(E)$.

Examples

(1) $M = E = \mathbb{C}$. So $\mathcal{T}_{+}(E) = A(\mathbb{D})$, σ is on H and $E^{\sigma} = B(H)$. (2) $M = \mathbb{C}$, $E = \mathbb{C}^{d}$. $\mathcal{T}_{+}(E) = \mathcal{A}_{d}$ (Popescu's algebra) and $E^{\sigma} = (B(H))^{(d)} : H \to \mathbb{C}^{d} \otimes H$. c.c. representations are

parameterized by row contractions (T_1, \ldots, T_d) .

(3) *M* general, $E =_{\alpha} M$ for an automorphism α . $\mathcal{T}_{+}(E) =$ the analytic crossed product.

 $E^{\sigma} = \{X \in B(H) : \sigma(\alpha(T))X = X\sigma(T), T \in B(H)\}.$

Ultraweakly continuous representations of $H^{\infty}(E)$

Question: For which $\eta \in \overline{\mathbb{D}(E^{\sigma})}$ does the corresponding representation extend to an ultra-weakly continuous, c.c. representation of $H^{\infty}(E)$?

Recall :

When $M = E = \mathbb{C}$, $H^{\infty}(E) = H^{\infty}(\mathbb{D})$. If σ is on H, $E^{\sigma} = B(H)$ so $\eta \in B(H)$ and $\|\eta\| \leq 1$. Then η defines a c.c. representation of $A(\mathbb{D})$ and the question is: When does it have an H^{∞} -functional calculus?

The answer: if and only if the spectral measure of the unitary part of the operator is absolutely continuous with respect to Lebesgue measure.

A completely contractive covariant representation (T, σ) of (E, M) on a Hilbert space H is called **isometric** in case $\tilde{T} : E \otimes H \to H$ is an isometry.

Theorem

Let (T, σ) be a completely contractive covariant representation of (E, M) on a Hilbert space H. Then there is an isometric covariant representation (V, ρ) of (E, M) acting on a Hilbert space K containing H such that if P denotes the projection of K onto H, then

- **9** *P* commutes with $\rho(M)$ and $\rho(a)P = \sigma(a)P$, $a \in M$, and
- for all η ∈ E, V(η)* leaves H invariant and PV(η)P = T(η)P.

The representation (V, ρ) may be chosen so that the smallest subspace of K that contains H is all of K. When this is done, (V, ρ) is unique up to unitary equivalence and is called **the** minimal isometric dilation of (T, ρ) .

Remarks :

- (i) If (V, ρ) dilates (T, σ) as above, $P(V \times \rho)P = T \times \sigma$. Thus, if (V, ρ) extends, so does (T, σ) .
- (ii) Induced representations: Fix a faithful representation π of M on K, let $H = \mathcal{F}(E) \otimes_{\pi} K$ and define the representation of E by $\sigma(a) = \varphi_{\infty}(a) \otimes I_K$, $T(\xi) = T_{\xi} \otimes I_K$. This extends to an ultra weakly continuous representation of $H^{\infty}(E)$ by $X \mapsto X \otimes I_K$.
- (iii) If $\|\tilde{T}\| = \|\eta\| < 1$, the representation can be dilated to an induced representation. Thus extends.
- The problem is with η on the boundary.

Following Davidson-Li-Pitts we define

Definition

Given a c.c. representation (T, σ) on H, we say that $x \in H$ is absolutely continuous if the functional $\omega_x \circ (T \times \sigma)$, on $\mathcal{T}_+(E)$, extends to a ultraweakly continuous functional on $H^{\infty}(E)$ and we write $\mathcal{V}_{ac}(T, \sigma)$ for the set of all the absolutely continuous vectors for (T, σ) .

Here $\omega_x(Y) = \langle Yx, x \rangle$.

Notation: Fix a faithful normal representation of infinite multiplicity π of M on K_0 and write (S_0, σ_0) the associated induced representation (on $H_0 = \mathcal{F}(E) \otimes_{\pi} K_0$). For a given $\eta \in \overline{\mathbb{D}(E^{\sigma})}$ (corresponding to the representation (T, σ) on H) write $\mathcal{I}(S_0, \eta)$ for the space of intertwiners:

$$\{C: H_0 \to H: CS_0(\xi) = T(\xi)C, \ C\sigma_0(a) = \sigma(a)C, \xi \in E, \ a \in M\}.$$

NP

Theorem

If (T, σ) is an isometric representation then

$$\mathcal{V}_{ac}(T,\sigma) = \bigcup \{ Ran(C) : C \in \mathcal{I}(S_0, \tilde{T}) \}.$$

It follows that $\mathcal{V}_{ac}(T,\sigma)$ is a closed, $\sigma(M)$ -invariant subspace.

Sketch of the proof of \subseteq : Fix $x \in \mathcal{V}_{ac}(T, \sigma)$. (i) Can find $g, k \in \mathcal{F}(E) \otimes_{\pi} K_0$ such that, for $X \in \mathcal{T}_+(E)$, $\langle (T \times \sigma)(X)x, x \rangle = \langle (S_0 \times \sigma_0)(X)g, k \rangle$ and then, for $\tau := (T \times \sigma) \oplus (S_0 \times \sigma_0)$, $\langle \tau(X)(x\oplus g), (x\oplus (-k))\rangle = 0.$ (ii) Write $\mathcal{N} = [\tau(\mathcal{T}_+(E))(x \oplus g)]$ and (R, ρ) for $\tau | \mathcal{N}$. (iii) Using the Wold decomposition and part (i), we show that (R, ρ) is induced. (iv) $C_0 := P_H | \mathcal{N}$ intertwines (R, ρ) and (T, σ) and can be extended to $C \in \mathcal{I}(S_0, \tilde{T})$. Also $C_0(x \oplus g) = x$.

◆□> ◆□> ◆三> ◆三> □

Theorem

Let (T, σ) be a completely contractive representation of (E, M) on the Hilbert space H, let (V, ρ) be the minimal isometric dilation of (T, σ) acting on a Hilbert space K containing H, and let P denote the projection of K onto H. Then $K \ominus H$ is contained in $\mathcal{V}_{ac}(V, \rho)$ and the following sets are equal.

(1)
$$\mathcal{V}_{ac}(T, \sigma)$$
.
(2) $H \cap \mathcal{V}_{ac}(V, \rho)$.
(3) $P\mathcal{V}_{ac}(V, \rho)$.
(4) $\bigcup \{Ran(C) \mid C \in \mathcal{I}(S_0, \tilde{T})\}$.
In particular, $\mathcal{V}_{ac}(T, \sigma) = H$ if and only if $\mathcal{V}_{ac}(V, \rho) = K$.

Intertwiners and superharmonic elements

Given a c.c. representation (T, σ) , one defines the completely positive map associated with it, $\Phi_T : \sigma(M)' \to \sigma(M)'$ by

$$\Phi_{T}(b) = \eta^{*}(I_{E} \otimes b)\eta = \tilde{T}(I_{E} \otimes b)\tilde{T}^{*}$$

where
$$\eta = \tilde{T}^*$$
.
E.g.: If $\tilde{T} = (T_1, \dots, T_d)$ (a row-contraction),

$$\Phi_T(b) = \sum T_i b T_i^*.$$

Note: If $C \in \mathcal{I}(S_0, \eta)$, then $Q = CC^*$ lies in $\sigma(M)'$ and satisfies

- * $Q \ge 0$ and $\Phi_T(Q) \le Q$, and
- * $\Phi^n_T(Q) \rightarrow 0$ ultra weakly.

Such an element will be said to be *pure superharmonic* for Φ_T .

The converse also holds: Given an element $Q \in \sigma(M)'$ that is pure superharmonic for Φ_T , define $r \in \sigma(M)'$ to be the positive square root of $Q - \Phi_T(Q)$. Then $\sum_{n\geq 0} \Phi_T^n(r^2) = Q$ (SOT). Let \mathcal{R} be the closure of the range of r and $\sigma_{\mathcal{R}} := \sigma | \mathcal{R}$. Let $v : \mathcal{R} \to K_0$ be an isometry that intertwines $\sigma_{\mathcal{R}}$ and π . Then set

$$C^* = (I_{\mathcal{F}(E)} \otimes v) \sum_{n \geq 0} (I_{E^{\otimes n}} \otimes r) \tilde{T}_n^*$$

where $\tilde{T}_n = \tilde{T}(I_E \otimes \tilde{T}) \cdots (I_{E^{\otimes (n-1)}} \otimes \tilde{T}) : E^{\otimes n} \otimes_{\sigma} H \to H$. We have $C \in \mathcal{I}(S_0, \tilde{T})$ and $CC^* = Q$.

Corollary

$$\bigcup \{ Ran(C) : C \in \mathcal{I}(S_0, \tilde{T}) \} =$$

 $= \bigvee \{ Ran(Q) : Q \text{ is a pure superharmonic operator for } \Phi_T \}.$

・ロット 4回ット 4回ット 4回ット 4回ット

Theorem

Let $T \times \sigma$ be a c.c. representation of $\mathcal{T}_+(E)$ on H and write $\eta = \tilde{T}^*$ for the element of $\overline{\mathbb{D}(E^{\sigma})}$ associated with it. Then the following are equivalent.

 The representation T × σ extends to a c.c. ultra weakly continuous representation of H[∞](E).

•
$$\mathcal{V}_{ac}(T,\sigma) = H$$

•
$$H = \bigvee \{ Ran(C) : C \in \mathcal{I}(S_0, \eta) \}.$$

• $H = \bigvee \{Ran(Q) : Q \text{ is pure superharmonic for } \Phi_T\}$

Arguments and partial results: Douglas (69), Davidson-Li-Pitts (05).

This theorem describes the representations of $H^{\infty}(E)$, whose restriction to M is given (equals σ), as a subset $AC(E^{\sigma})$ of the ball $\overline{\mathbb{D}(E^{\sigma})}$ containing $\mathbb{D}(E^{\sigma})$. Recall that E^{σ} is a W^* -correspondence.

Elements of $H^{\infty}(E)$ as functions

Conclusion: We now view the elements of $H^{\infty}(E)$ as functions (B(H)-valued)on $AC(E^{\sigma})$. For $X \in H^{\infty}(E)$, we write \hat{X} for the resulting function. Thus

$$\widehat{X}(\eta^*) = (\eta^* \times \sigma)(X).$$

Next, I will present an interpolation result (the noncommutative Nevanlinna-Pick theorem) for these functions (**on** $AC(E^{\sigma})$). For the open unit ball, this was done in the case $M = \mathbb{C}$ (and others) by Popescu and by Davidson-Pitts. The general situation (on the open ball) was proved by us in 2004.

Noncommutative Nevanlinna-Pick interpolation

The classical NP theorem Given z_1, \ldots, z_m in $\mathbb{D} \subseteq \mathbb{C}$ and w_1, \ldots, w_m in \mathbb{C} , when can one find a function $f \in H^{\infty}(\mathbb{D})$ with $||f|| \leq 1$ and $f(z_i) = w_i$ for all *i*? Answer: If and only if the $m \times m$ matrix (the Pick matrix)

$$\left(\frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}}\right)$$

is positive.

Our noncommutative analogue on the **open** unit ball is the following.

Theorem

Let E be a W^{*}-correspondence over M, σ a faithful normal representation of M on H. For $\eta_1, \ldots, \eta_m \in \mathbb{D}(E^{\sigma})$ and $D_1, \ldots, D_m \in B(H)$, one can find $X \in H^{\infty}(E)$ with $||X|| \leq 1$ that satisfies

$$\widehat{X}(\eta_i^*) = D_i$$

for all $i \leq m$ if and only if the $m \times m$ matrix of maps

$$((Id - Ad(D_i, D_j)) \circ (Id - \theta_{\eta_i, \eta_j})^{-1})$$

defines a completely positive map from $M_m(\sigma(M)')$ to $M_m(B(H))$.

For $M = \mathbb{C}, E = \mathbb{C}^n$: Popescu, Davidson-Pitts. **Question**: What about η_1, \ldots, η_m in $AC(\sigma)$? In this case $(Id - \theta_{\eta_i,\eta_j})^{-1}$ is not defined.

Simple observation : If Φ , Ψ are positive maps such that $Id - \Phi$ is invertible then $(Id - \Psi) \circ (Id - \Phi)^{-1}$ is positive if and only if :

$$\{a \ge 0 : \Phi(a) \le a\} \subseteq \{a \ge 0 : \Psi(a) \le a\}.$$

The last statement makes sense even if $Id - \Phi$ is not invertible. It is related to the Lyapunov preorder studied in matrix theory. This was pointed out to us by Nir Cohen.

Theorem

Let E be a W^{*}-correspondence over the von Neumann algebra M and let σ be a faithful normal representation of M on H. Given $\eta_1, \eta_2, \ldots, \eta_k \in AC(E^{\sigma})$ and $D_1, D_2, \ldots, D_k \in B(H)$, the following conditions are equivalent.

(1) There is an element $X \in H^{\infty}(E)$ such that $||X|| \le 1$ and such that

$$X(\eta_i^*)=D_i$$

$$i = 1, 2, ..., k.$$
(2) For every $m \ge 1$, $i : \{1, ..., m\} \to \{1, ..., k\}$ and $C_1, C_2, ..., C_m$ with $C_j \in \mathcal{I}(S_0, \eta^*_{i(j)})$, we have
$$(D_{i(l)}C_lC_j^*D^*_{i(j)})_{l,j} \le (C_lC_j^*)_{l,j}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

About the proof of the NP Theorem : The proof follows the general lines of Sarason's proof (1967) of the classical NP Theorem. The main two ingredients used are:

- (1) The Commutant Lifting Theorem for c.c. representations: Every operator that commutes with the image of the representation can be lifted to an operator that commutes with the image of the minimal isometric dilation without increasing the norm.
- (2) Identification of the commutant.

The commutant of an induced representation

Let *E* be a *W*^{*}-correspondence over the von Neumann algebra *M* and let σ be a faithful normal representation of *M* on *H*. The algebra $H^{\infty}(E)$ can be represented (completely isometrically, ultra-weakly homeomorphically) on $\mathcal{F}(E) \otimes_{\sigma} H$ by $X \mapsto X \otimes I_H$. Write $H^{\infty}(E) \otimes I_H$ for the image of this representation. Similarly, we can write $H^{\infty}(E^{\sigma}) \otimes I_H$ for the algebra $H^{\infty}(E^{\sigma})$ represented on $\mathcal{F}(E^{\sigma}) \otimes_{\iota} H$ (where ι is the identity representation of $\sigma(M)'$ on *H*).

Theorem

The commutant of $H^{\infty}(E) \otimes I_{H}$ is unitarily isomorphic to $H^{\infty}(E^{\sigma}) \otimes I_{H}$. Consequently (by duality), $(H^{\infty}(E) \otimes I_{H})'' = H^{\infty}(E) \otimes I_{H}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You !